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Summary

A hedonic price index is generally defined as the ratio of the price of goods in the " period to the
price in the base period, where these prices are estimated with conditions of structural change by
using each period’s hedonic price model. This paper, however, demonstrates that in the case of
the Tokyo metropolitan secondhand housing market, the coefficients of each period’s hedonic
price model have moved up and down excessively over the whole estimation period for some
reason other than structural changes. Therefore, the model would no longer be effective for the
estimation of a hedonic price index. Instead, this paper attempts to develop an Overlapping
Period Hedonic Model to remedy the defects of the hedonic price model as described above.
Based on the assumption that structural change would take place gradually during a specified
period, the new model is estimated by using the observations not only in a current period but also
for recent periods of a specified length to eliminate the unexpected effects caused by reasons
other than structural changes. A new price index, which is called here the OPHM index, is

calculated from the new model.



1 Aim of this study

1.1 A housing price index and the change in housing quality issue

A hedonic price index is constructed to capture the price changes of goods and services between
different points in time.! A hedonic price index is generally defined as the ratio of the price of
goods or services in the / period and the corresponding price in the base period. In principle, it is
necessary to compare goods and services of the same quality between different points in time.
However, it is difficult to implement this principle in cases where the quality of goods and
services in the market changes over time. Hence we need to adjust for changes to keep quality
equivalent to that in the base period and then calculate the ratio of the two prices. This is
particularly the case for those goods and services that have a variety of characteristics, and where
judgment of quality relies on the consumer’s preferences for those characteristics. A housing
price index, our subject in this paper, is one of the typical examples of this practice.

It should firstly be noted that in constructing a housing price index, it is impossible to monitor
the prices of houses of the same quality in the market repeatedly. This is because the
specifications and facilities of each property differ. Even if they had very similar specifications,
there would still be differences in the age of the buildings and their degree of depreciation.
Residential property has strong individuality in its characteristics: in other words, it is
heterogeneous. We would regard this as its “particularity with few equivalents”. Secondly, the
quality of residential properties, especially condominiums, changes in accordance with technical

development through time. For example, walls and slab floors have been made thicker to improve

! Typical examples are the Consumer Price Index and the Wholesale Price Index.



their sound insulation for greater protection of privacy. Other facilities such as floor heating,

integrated kitchen systems and security systems have also improved rapidly.

1.2 The hedonic approach and its application to a housing price index

We have two approaches for coping with the above issue in constructing a housing price index.
One is the Repeat Sales approach and the other is the Hedonic Pricing approach. The Repeat
Sales approach focuses on sales transactions involving the same properties, which have happened
repeatedly in the market. We can avoid the problem of particularity of the goods by observing the
same sample of properties. However, there is no comprehensive database where we could
observe repeated sales transactions of the same properties. Hence it is almost impossible for us to
apply this approach to establish a housing price index.

In the hedonic approach, we assume that housing price (p) can be explained by the
characteristics of each property. We would estimate a regression model representing housing
price by using explanatory variables ( z ) such as commuting time to CBD, surrounding
environment, floor space, condition of facilities, and age of the accommodation (These are
preference criteria from the consumers’ point of view).

In theory, consumers look for residential property with their preference criteria while housing
suppliers try to provide housing that reflects those preferences. Given optimal behavior of both
parties, we should be able to estimate a housing market price function ( p= p(z)) with market
equilibrium (Shepard 1999). This would be a hedonic price function. In the hedonic approach, we
focus on housing that can be described by particular variables ( z )—that is, housing of the same

quality—and then compare its hedonic price between different points in time.



An index constructed by the hedonic approach is called a quality-adjusted price index or
hedonic price index. In this paper, we estimate a hedonic price index for the secondhand housing

market in the Tokyo metropolitan area.

1.3 The purpose of the study: a hedonic housing price index (p = p(z))

Our starting issue is to build up a secondhand condominium price index for which we have
n,samples of sales transactions (p,,z,) for a period (¢). To apply the hedonic approach, we need
to estimate a hedonic price function ( p = p(z) ). We have two hypotheses for this application. One
is to assume that the hedonic price function does not change during all periods of estimation. In
this case, the coefficient of variance is the same for all periods. The estimated price function
under this assumption is called a structurally restricted price model. The index established under
this model is therefore a structurally restricted price index. Under the second hypothesis, the
function allows for structural change during each period. This model is called a structurally
nonrestricted price model. Accordingly, the index based on this function is a structurally
nonrestricted price index (Nakamura, 1996).
In this paper, we start by building up these two types of hedonic price index and then
investigate the following issues.
1. The characteristics of the two types of price index mentioned above and their
relationship.
2. Positive analyses of the two indices.
3. The method of identifying structural change.
4. Problems and limitations of the two price indices with regard to structural change.
Finally, a new model for a hedonic housing price index (Overlapping Period Hedonic Model

index) is proposed and its relevance examined.



2 Theoretical review of structurally restricted and nonrestricted price indices

Firstly, we review several characteristics of structurally restricted and nonrestricted price indices
and the relationship between these indices. This is useful when we consider the issue of structural

change in the later part of this section.

2.1 Definition of a housing price index

A housing price index is generally defined as the ratio of the price in the " period to the price in

the base period.
Index, = /1 (1)
Po

In our model, we make a logarithmic transformation of housing price p, and variable z,, ("
variable as of period 7) into y, =log p, and x,, =logz,, for analysis. Hence we amend equation
(1) and define our housing price index, Lindex,, in the following equation (2) for explanatory

purposes.
log Index, =log p, —log py =y, — ¥y (= Lindex,) (2)

2.2 Methodology: a structurally restricted price index

Here we demonstrate how we construct a housing price index for four periods—period 0, period

1, period 2, and period 3—where the base point is period 0, housing price is y, and the only
variable for explanation is x. For each period, the number of samples is »,(7=0,1,2,3) and each

sample has a set of data on price and the explanatory variable (y,x) .



The structurally restricted price index is established with a model that assumes that the
regression coefficient does not change for all estimation periods. We add, however, time dummy

factors—d, , d,, d,—as constant terms in order to deal with price change as of period 1-3. The
time dummy factor, d,(7=1,2,3), equals 1 where the period is ¢ and 0 in other cases. Under the

assumptions mentioned above, the model is:
y=ayd, +a,d, +a;d; +by +bx+u, (3)

where:

a,(t=1,2,3) is the regression coefficient for the time dummy factor;

b, 1s a constant term;

b, is the regression coefficient for the variable x; and

u is the random error.

While we have n, samples for each period, we construct a price model by using all data for
the periods, since we assume that the regression coefficient does not change. The housing price

under variable x can be estimated as:
P=a,d, + a,d, +aydy + by + byx. (4)

The housing price for each period is, with time dummy factor, expressed as:

Py=a, +by +byx (5)



Py =a, +50 +l;,x.
Consequently, the housing price index can be described as:
Lindex, = yy — ¥, =0
Lindex, =y, — y, =4,
Lindex, =3, — J, =, (6)
Lindex, = y; — yo, = a;,

where the period 0 is the base point.

This means that the structurally restricted price index is determined by the regression

coefficient of the time dummy factor, irrespective of the quality of housing expressed as x.
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Figure 1. Structurally restricted price index.



2.3  Methodology: a structurally nonrestricted price index

With the structurally nonrestricted price index, we assume that the regression coefficient changes

in each period. By using », samples for each period, the structurally nonrestricted price model is

estimated as:
yrzbl.0+br.lx.l +ur (f=0,1,2,3), (7)

where:

y, s the housing price at period #;

x,(1=1,2,3) is a variable expressing the quality of housing at period ;
b, , 1s a constant term at period t,

b,, is the regression coefficient at period #; and

u, is the random error at period .

The housing price for each period is expressed as:

~

Vo =bgg +by,x

V2 =£2.0 + 52.13‘ (8)

Consequently, the housing price index can be described as:

Lindex, =y, — ¥, =0



Lindex, =y, — ¥, :(51.0 _50'0) + (l';,‘, - 50.1 Jx=¢;

Lindex, =, = ¥y = (52,0 o 50.0 )+ (52,1 - 50.1 )x=c¢, 9

Lindex, = $, — Po = (bs g = boo) + (by, = by, )x=c

where the period 0 is the base point.
This means that the structurally nonrestricted price index depends on the variable x upon
which we focus. Therefore, it is possible for a price index of a particular type of housing to go up

while the index of another type of housing goes down.
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Figure 2. Structurally nonrestricted price index.

2.4 Characteristics of structurally restricted and structurally nonrestricted price indices

We summarized the characteristics of the two types of indices above, although some of them
require only very basic regression analysis.

We now use a different representation. Assume that we work out a price index on the basis of
two periods, namely period 0 and period 1 with the base point as period 0. Each period has price

information of y,(n, x1) and y,(n, x1) as well as an explanatory variable of X,(n, xK) and

8



X,(n, x K) respectively. The description of (nxm) is a matrix (row vector X column vector). The

number of observations is expressed as n, and », for each period. Finally, K is the number of

explanatory variables including the constant term.

Having all data for both periods together, the model is described as:

y=

where:

y

1.

8.

Xp+i, (10)

=G o)+

» 1 X, b u,

0 is a column vector of which all elements are zero.

1 is a column vector of which all elements are one.

The first column of both X, and X, is one vector for the constant term.

The first column of X ,(0,1)' is a time dummy factor.

a, 1s the regression coefficient for the time dummy factor of period 1.

b(K x1) is a regression coefficient row vector for explanatory variables and the constant
term, except for the time dummy factor.

P(K +1x1) is a regression coefficient vector that consists of the scalar of a, and the
column vector of b(K x1).

Both u,(n, x1) and u,(n, x1) are random errors.

On the other hand, the model with structural change is described, by using the data for each

period, as:



Yo =XoBy + 1 (1)
»n=Xp +u. (12)

Characteristic 1: The sum of estimation error for each period is zero.

In the case of the model with no structural change, ¥ is estimated as j=Xp=X(X'X)"' X'y,

where #=(X'X)" X' . The error is described as 4=y - j=(-X(X'X)"' X")¥ accordingly. By
multiplying X' on the equation, we derive X'a=0. The first row vector of the data matrix is the
time dummy factor for period 1 and the second row vector is 1 since it corresponds with the

constant term. The equation of X'i=0, therefore, indicates that the sum of the estimation error

for period 0 is zero and that the sum of the estimation error for period 1 is also zero.

Characteristic 2: The estimated equation y = Xi# of the model with no structural change

runs through the gravity point of observations of each period.

From the equation of y = X, we have the following equations:

A
~ ~

$9=Xob, ity =Fy - o » therefore ¥, — ity = X b, (13)

and

~
~ ~ ~

§,=a, +X,b, &, =¥ —p,, therefore ¥, —a, =a, + X b. (14)

By multiplying I' (all vectors are 1) on both sides from the left and then dividing them by the

observation numbers of each period, we have the following equations:

Yo=X,'b, (15)

10



and

Bh=a+x'b. (16)

We find y, and y, to be the mean price of each period with X, and X, as averages of

explanatory variance. Similarly, in the model with structural change, we have the following

equations.
Yo :Eo'ﬁo (17)
¥ =55 (18)

Characteristic 3: If the average of the explanatory variances of period 0 and period 1 are

equal, i.e. X, =Xx,, and if the houses are of average quality, housing price indices derived
from the two models are equal.
Where x, = x, =X, the estimated housing prices with the value of x are:

Jo=Xb=3'p, (19)
and

Fi=é+Xb=x4,. (20)

This means that the estimated housing prices with the value ¥ from both models are the

average prices of each period.

11



2.5 The relationship between the index with no structural change and the index with

structural change

In addition to equation (10) as well as (11) and (12), we add another model, which is the model

with no structural change and without time dummy factors:
y=Xp. +u., (21)

where

p. is the regression coefficient vector that includes the constant term but excludes time

dummy factors.

Characteristic 4: If the variance of the random error of the two models is the same in all

periods, the regression coefficient of the model with no structural change, ., is the

weighted average of the regression coefficients of the model with structural change, Bos B
by the inverse matrix of the covariance matrix of the regression coefficient.

The estimated value of f. in the equation (21) is:

B =XV X'y

1 1) _] ' T (22)
=(Xo' X+ X,'X)) " (Xo'yo + X' 21)
The estimated values of f,, #, in equations (11) and (12) are:
ﬁo"(XU'XU)VlXo'J’oa (23)

12



and
ﬁlz(Xl‘leile'yl' (24)

Assuming that u,~N(0,6°1,) and w,~N(0,0°I,), namely that covariances of the random

error terms are the same in each period, we obtain:

Var(B,)=0%(Xy'X,)™" (=V,), (25)

and
Var(B)=o"(X,'X))" (=1)). (26)
Equation (22) can then be altered by (23), (24), (25) and (26) so that:

B. =W +a V) (W By + 0V B)

1 fls= 15 ] & (27)
Z(Voﬁ + V|V i (V()V ﬁo + Vli pl)

Equation (27) suggests that the regression coefficient of the model with no structural
change, ., is the weighted average of the regression coefficients of the model with structural
change, f3,, f3,, by the inverse of the covariance matrix.

Similarly, as in the case of equation (10), which represents the model with no structural
change including time dummy factors, the regression coefficients except for the constant and

time dummy factors are the weighted averages of the regression coefficients of the model with
structural change, ﬁu, [ffl , by the inverse of the covariance matrix. This is simply because equation

(10) is made by shifting the regression plane of equation (21) in parallel as it goes through the

13



gravity point of observations for each period. Consequently, the regression coefficients of

equations (10) and (21) are the same except for the constant term and time dummy factors.

Characteristic 5: The index with no structural change is the same as the index with
structural change for those residential houses whose characteristics are defined as the

weighted average of the average of explanatory variables for each period, weighted by the
covariance matrix of the model with structural change in regression coefficients ﬁﬂ, ﬁ', .

As explained before, the index with no structural change for period 1 is represented as a time
dummy factor 4, in equation (10). Thus, for period 1, the index with structural change for

residential property with quality m can be described as:
¥ _j’0=m'ﬁ| _m'ﬁ():m'(ﬁl_ﬁo)' (28)

We can solve this equation to find out the value of m as the index equals a,. This helps us
understand under which conditions the two indices show the same movement.

Provided that 7,, X, , 7, and X, are average prices and values of each period, the index with no

structural change (a, ) is:

&I :(yl "El'[}*)_(:‘;"o _E{)'/}*)

L T (29)
= - ¥0)—(x,'-X,") B

This equation can be transformed by f. =¥, +V,")" (V;'B, +¥,"'B,), which is derived

from equation (27) into:

a, = (X' Wy + %' W)(B, - By)- (30)

14



We know that:
Wy=V,(Vy+V,)™", (31)
and
W, =V,(V, +V)™". (32)
Therefore, we can work out the value of m where m'(§, - ﬂo )=a, as follows:
m'=%,"W, +%,'W,. (33)

This shows that m is the weighted average of the average of the explanatory variables for each
period, weighted by the covariance matrix of the regression coefficients £,, 8, of the model with

structural change. This also demonstrates the case for Characteristic 3 because m=Xx if

Xy=X =X.

3 Positive analysis of the price index with no structural change and the price index with

structural change

3.1 Basic model

The basic equation of the model with no structural change is described as follows: the
explanatory variables for residential property characteristics ( z ) include floor space (FS),
distance from the nearest station (WK), accessibility to the CBD (4CC), age of building (BY),
area of balcony (BS) and other building characteristics (BC}). As for location factors, there is a
railway dummy factor (RD;) and an administrative area dummy factor (LD;). Finally, we have a

time dummy factor (7Dy) as well. The regression coefficient of the time dummy factor (a,,,)

15



represents the secondhand condominium price index. The application of this model to pooled

data from period 1 to period 7 makes an estimate of the index with no structural change.

log RP, = a, +a, log WK +a, log ACC +a; log F'S

+a, log BY +as log BS +ag log NU +a, log NR + azRT
+¥ay," BC,+X ay RD,+ X ay LD, +Xap TDy +&
h i 7 x

RP
WK
ACC
FS
BY
BS
NU
RT
BC
RD

LD
TD

Price of Condominium

Distance to nearest station
Accessibility to Central Business District
Floor Space/Square Meters
Number of Years After Construction
Balcony Space/Square

The Number of Units

Market Reservation Time

Other Building Characteristics

Rail Dummy

Local Dummy

Time Dummy

N.B. We do not investigate the case for g = 2: condominium rent in this paper.

(34)

The equation of the model with structural change can be described as the model with no

structural change by removing the time dummy factor, although the model must be applied to

data for each observed period. We then have 159 models from 159 periods.

log RP,, = a, +a, logWK, +a,, log ACC, +a;,log F§,

+a,, logBY, +as, log BS, +a,, log NU, +a,, log NR, + ag RT,
+§a‘?.h,l. BC,, +Zam.u' RD,, +Z_an,j.f' LD;,+& [p=leerse T)
i i

3.2 Data for analysis

3.2.1 Secondhand condominium price data

(35)

The database in Ono et al. (2001) has been updated for this analysis. The main information

resource is Residential Information Weekly (or Shukan Jhutaku Joho in Japanese). From this, we

16



can gain information on characteristics and asking prices of listed property on a weekly basis.
Hence there are historical price data of individual properties from when they are put on the
market in the magazine for the first time until they are removed owing to sale or other reasons.
The most important information is the original asking price that appears in the magazine/market,
the final asking price in the magazine/market before it is removed and the actual sales price
(although actual sales prices are not all available in the magazine).

The original asking price represents the seller’s desired price rather than the market value.
Some of the actual sales prices reflect specific situations of individual transactions such as “quick
sale” or “hasty purchase”, which are not uncommon but quite typical in property transactions.
Therefore, we have collected the final asking prices from the magazine and analyzed the samples.
The last asking price shown in the magazine is the first bid price offered by a prospective buyer.
This happens through the process where several particulars of a residential property are disclosed
to the market in the magazine and the buyer responds to that information. Thus the price indicates
an upper range of possible bid prices and can be regarded as a competitive market price,

relatively free from individual specific conditions associated with transactions.

3.2.2 Data on characteristics of residential property
With regard to building structure, we excluded samples of condominiums with steel frame
structure from our database. This is because almost all residential investment properties are either
of reinforced concrete or steel-reinforced concrete structure.

The transport accessibility of each location is expressed by “distance from the nearest station”
(WK) and “accessibility to CBD” (4CC). ACC is measured in the following way. First, we
designated the 40 biggest train terminal stations in terms of the number of passengers in the

metropolitan area as the “CBD” since the model is designed for this area. Secondly, we

17



investigated time distances from all stations in the area to the 40 terminal stations and weighted
them by the number of passengers for each terminal station to calculate the ACC for each
station.? The ACC shows the average time distance of each station to the terminals.? By
considering the time distances to multiple terminal stations, the time-saving effect from new
railway developments on the whole transport network can be embedded. If the property is located
within walking distance of the CBD, we use a dummy factor, WD, to show it.

Transaction price is also influenced by disparity between demand and supply. This can be
represented by marketing time (RT), which starts when the seller first puts a property on to the
market and ends when the property sells. A long RT suggests that there was a big gap between the
seller and the buyer in terms of price. A short RT implies that the first asking price was nearly
market price and that it was easy for the seller and buyer to agree on the price. We measured how
long it took for a property placed in the magazine to be removed owing due to transaction and
recorded it in a database.

We also identified a few quantitative measures representing building characteristics. They are
floor space (FS), age of building (BY), balcony space (BS), and the number of units (NU). The
number of units is regarded as a proxy variable for the grade of the property and the quality of the
common space.

We set other types of dummy factor. The ground floor dummy factor is used since the price of
a ground floor property tends to be lower than that of higher floor properties, except for those that
have exclusive gardens. A top floor dummy factor is employed as well. In terms of direction of

property, there are two dummy factors, namely the south-facing dummy factor (SD) and the

2

3 In order to undertake monthly analysis, it is desirable to renew ACC as soon as railway timetables change. However, we
made changes on 1 April and 1 October each year.

We use a database provided by Jordan Ltd.

18



south-directed dummy factor, which includes southeast and southwest facing properties.
Furthermore, we have the RSC dummy factor and the HLC dummy factor as proxies for housing
quality. The RSC dummy factor indicates that the property is of reinforced concrete steel
structure while the HLC dummy factor suggests that the Housing Loan Corporation mortgage is
available for the property.

The above variables are all related to location and building characteristics. It is reasonable to
assume that wider regional factors could also affect the housing price. Therefore, we set an
administrative area dummy factor (LD) to reflect differences in the quality in public services, as
well as Ji-Gurai or area rank. Finally the railway dummy factor (RD) represents historical
background in that most of the Japanese residential developments were implemented along
railway lines.

Table 1 describes these data while Table 2 summarizes key statistics for each variable.

19



Table 1. List of analyzed data.

Symbols Variables Contents Unit
WK Wistnros 16 aEarest BidtoH Time dls.tance to the nearest station (walking time| e
and bus time).
T Average of railway riding time in daytime to the]
o t A )
AcCC Acccssrblhty ° c.enlra] most crowded 40 stations in 1988 weighted by the] minute
business district .
number of passengers at the stations*.
F§ Floor space/ square meters |Floor space (as shown in Jutaku Joho magazine*™). m’
; Period between the date when the data is deleted|
Number of years since ; .
BY ; from the magazine and the date of construction of year
construction S
the building.
BS Balaomy Biace/ Bquams Balcony space (as shown in Jutaku Joho magazine). m’
meters
NU Number of units Total units of the condominium. unit
Period between the date when the data appear in the]
RT Market reservation time |magazine for the first time and the date of being| date
deleted.
MC Management cost Management fee. YEN/ month|
Whether the time distance includes riding time of]
wD Walk dummy bus 1, (0,1)
not including bus time 1 including bus time 0.
The pro i the ground fl !
FF First floor dummy Spropayb e ing oor (0,1)
on other floors 0.
Th erty is on the top floor 1,
HF Highest floor dummy 8. DEGREELY S TpERar (0,1)
on the other floors 0.
Fenestrae facing south 1,
SD South-facing dummy BeiacIng SOl 0,1)
other directions 0.
’ Fenestrae facing south, south west or south east 1,
SD2 South-facing dummy2 o (0,1)
other directions 0.
1 i v st
K Fatvsconcsts dusimy Steel reinforced concrete frame structure 1, .1
other structure 0.
KD Housing Loan Corporation |Eligible for Housing Loan Corporation loan 1, ©.1)
i dummy not eligible 0. )
RDi (i=0,...]) Railway line dummy ith raflway i.me 1, other r.mlway line 0 ©.1)
(10 railway lines appeared in the magazine)
LD} (=0,...)| Location (Ward) dummy j th a n.rrmfvtrutwe district 1 ©.1)
other district 0.
Dk (k=0,....K)| Time dummy (monthlyy |- month L 0,1)
other month 0.

* Shinjhuku station is the busiest station. The busiest 40 stations include main terminal stations of Yamanote
Line such as Shinagawa, Ikebukuro and Shibuya as well as Yokohama, Kawasaki, Chiba, Omiya and Kashiwa
stations. We have established a 73,920 railway line network database, which is worked out of 1848 stations
appeared in the magazine for the 40 stations. This database is updated every six months.

l*‘ a weekly residential listing magazine by RECRUIT
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Table 2. Key statistics of secondhand condominium price data.

Variables Average Stal'uiz}rd Minimum Maximum
Deviation
RP: Secondhand condominimum price
(10,000 Yen) 4,199.54 3,018.12 500.00 36,300.00
FS: Floor space (1) 55.30 18.85 15.00 120.00
RPIFS 75.59 44.02 12.14 695.08
WK : Distance l(? the nearest station 768 432 1.00 26.00
(minutes)
ACC: Accessibility to Central
Business District (minutes) 25.14 5.02 1631 92,69
BY: Age of building (year) 13.74 7.08 2.00 35.00
BS': Balcony Space (nf) 7.33 5.85 5.00 165.20
NU: The Number of Units 101.87 132.08 6.00 1324.00
RT: Market reservation time (day) 88.96 86.55 1.00 700.00

1989/04-2002/06 n=164,088

3.2.3 Observation period and monthly data
The number of samples is 164,088 in the Tokyo Special District (23 wards) between April 1989

and June 2002. The model is estimated on a monthly basis. There are 159 observation periods.

3.3 The results of the index with no structural change estimate

The results of our estimate of a residential price index with no structural change (RHI: Resale
House Index) are shown in detail in Table 3. The degree of precision of the model is good, as
shown by the coefficient of determination adjusted for the degrees of freedom.

In Figure 3, the RHI is compared with the average value index (A/: the ratio of the average
price calculated monthly to the average price in April, 1989), and the monthly number of samples
was shown simultaneously. By RHI and AI, it turns out that a different trend occurred.

Furthermore, a large variation is evident in the monthly number of samples.
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Table 3. Estimated results of the model with no structural change: Tokyo’s 23 wards.

Method of Estimation

OLS
Dependent Variable

RP: Resale Price of Condominiums (in log)
Independent Variables

Property Characler|s||cs (in log) | Coefficient  t-value Rallway/Su'bw'ay Line Dummy Coefficient| t-value
Constant 6.182 327.650 LDj (i=0,....J)
FS: Floor space (.998 639.660 Yamanote Line 0,042 17.400
BS : Balcony space 0.021 24,255 Ginza Line 0.166 32.650
NU: Number of units 0.023 41.768 Marunouchi Line 0.017 5.041
RT: Market reservation time 0.021 41.982 Hibiya Line 0.126 36.642
ACC' : Accessibility to CBD -0.424 -717.887 Chiyoda Line 0.042 11.271
WK : Distance to the nearest station -0.054 -70.975 Yurakucho Line -0.010 -3.016
BY: Age of building - -0.186 -266.206 Hanzomon Line 0.046 5.342
Property Characteristics (dummy variables) Nanboku Line -0.037 -3.649
WD : Walking distance 0.122 29,920 Toei Mita Line -0.042 -11.044
SD : South-facing 0.008 1.312 Toei Shinjuku Line -0.012 4.331
KD : Housing Loan Corporation 0.068 19.872 Yurikamome -0.318 -2.326
Tokyo Monorail -0.147 -16.655
Ward (city) Dummy ' Keihin Kyuko Line -0.175 -45.615
RDi (i=0,....]) R Kuko Line 20.16] 118.559
Chiyoda 0.331 55.457 Keihin Tohoku Line -0.024 -5.902
Minato 0.159 50.440 Tokyu Ikegami Line 0.042 8.950
Shinjhuku 0.046 15.406 Tokyu Oimachi Line 0.034 7.618
Taito -0.303 -64.684 Tokyu Toyoko Line 0.048 12.590
Sumida -0.302 -72.409 Tokyu Shin-Tamagawa Line 0,069 5.072
Koto 0316 -99.554 Tokyu Setagaya Line -0.079 -10.296
Shinagawa -0.046 -13.318 Odakyu Line -0.009 -2.440
Meguro 0.035 8.879 Keio Inokashira Line 0.024 4.795
Ota -0.047 -12.893 Keio Shi-Line -0.128 -39.617
Setagaya 0.085 27.799 Chuo Line 0.026 7.545
Shibuya 0.198 59.443 Seibu Shinjhuku Line -0.029 -7.345
Nakano -0.036 -9.962 Seibu Ikebukuro Line -0.058 -14.159
Toshima -0.087 -23.965 Tobu Tojyo Line -0.047 -9.976
Kita -0.190 -33.093 Saikyo Line -0.128 -16.912
Arakawa -0.395 -91.019 Takasaki Line -0.074 -11.465
Itabashi -0.192 -46.598 Tobu Isezaki Line -0.015 -3.143
Nerima -0.084 -22.497 Joban Line Express 0.021 3.641
Adachi -(0.432 -95.023 Keisei Oshiage Line -0.058 -9.710
Katsushika -0.366 -71.098
Edogawa -0.280 -72.991
Adjusted R square= 0.884
Number of Observations= 164,088

3.4 The results of the price index with structural change estimate

The estimated results of the model with structural change can be explained as follows. As
explanatory factors, we used several residential characteristics that are shared during all the
periods to estimate secondhand condominium prices for each period. The price index with

structural change was constructed from the base period onwards. Figure 4 shows the price index
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for Tokyo’s 23 wards. The broken line labeled ‘NRHI" indicates the price index with structural

change while the solid line named ‘RHT’ is the line for the price index with no structural change.
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Figure 4. Comparison of price indices with structural change (VRHI) and no structural

change (RHI): 1989/04 - 2002/06.

3.5 The degree of volatility of the index with structural change

Comparing the two indices shown in Figure 4, we can see that the price index with structural
change is more volatile than the index with no structural change. This fact does not seem to
match our perception of real housing price movements. For instance, the graph suggests that
housing prices fell significantly in a particular period. However, this phenomenon has not been
observed in the market where residential properties with particular characteristics have suffered
from large price falls in any period. Also, it is hardly possible to imagine that residential housing

prices have changed as drastically every month as the line suggests.
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While we cannot judge a priori the superiority of an index by the degree of volatility of the
index, the price index with structural change is certainly a method of indexation for prices with
structural change. If we put this index into practical use, we would need to find out the case for
such a drastic movement of the index. Otherwise, we have to assume that this change happens in
the statistical inference and work out how we can have an index without such movement.

Therefore, we put the issue of index superiority aside and focus on the degree of volatility of

the price index with structural change to investigate why it happens.

3.6 Accuracy of estimates

Figure 5 below shows the number of samples and adjusted coefficient of determination for the

159 estimates by the model with structural change for each period.
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Figure 5. Accuracy of the model with structural change: Monthly: 1989/04 - 2002/06.

1. The adjusted coefficient of determination is 0.85-0.90 with the exception of the period

1991-1992 (approximately 0.80), which is very good.
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2. The number of samples in several months is twice as many as in the other months.

However, the sample size shows little relationship with the coefficient of determination.
In other words, the number of samples has not affected the coefficient of determination.
We can identify, in Figure 3, some periods showing a large movement in the NRHM
index between 1991 and 1992, when the coefficient of determination is not very good.
However, other periods with good explanatory power also show great volatility.
Consequently, the explanatory power of the models has influenced the volatility of the

index.

4 The Overlapping Period Hedonic Model index in the secondhand housing market

4.1 Issues

The price index with no structural change is a hedonic price index based on the assumption that

there is no structural change during the subject period. However, this assumption is unreasonable

if we consider our observation in the last section where it is highly likely that structural changes

have happened in the past. It is also unreasonable to switch to the price index with structural

changes as we explained before. Therefore, we summarize several issues regarding housing price

indices while bearing the issue of structural change in mind.

L,

If the point of structural change is known, we can divide samples using this point into
separate periods and then estimate a model for each period. However, the question is
not how to identify the breaking point(s) when we know neither the number of points
nor when they are likely to be. This is the first question to be answered for structural

change.
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2. Even if we know the breaking point(s), they only explain structural change in the past.
We would face the situation where we need to import information from a set of new
data on monthly basis. The second question, therefore, is how to estimate a monthly
structure that might change because its underlying database is updated every month.

3. Our purpose is not to estimate a price model with structural change but to establish a
price index. The third issue is how to connect price indices with structural changes.

In the next section, we investigate several issues on structural change and develop our new

methodology for price indices.

4.2 Issues of structural change

The preferences of homebuyers for location and housing, such as “distance to the nearest station”
and “occupied space,” will change over time. In addition, external factors such as the tax regime
have impacts on behavioral patterns in housing selection. These affect the changes in regression
coefficients in the price models. The methodology applied for detection of structural changes is to
estimate regression models for the pre- and postbreaking points separately and then examine the
equality of regression coefficients. This is called a structural change test.

In this case, there are the following problems for a structural change test. If we know that a
particular external “shock™ has created a break point, we can carry out a structural change test
around that period. However, we cannot specify the month of a break point in advance. The break
point can be the exact month in which an external shock happens or it can be two or three months
later. We cannot tell how many break points we have over the whole period either. In technical
terms, it is likely that error variance is uneven from month to month, while the variance itself is

unknown.
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Thus, we assume that the structure changes every month and estimate a price model for each
in order to avoid the problem of unknown break points. If there is no structural change, the
models should have equal regression coefficients. If there is a structural change, the regression
coefficients will change in that month. At first, this approach seems to work, but it produces huge
volatility in the regression coefficients for each month of our estimate (see 4.3). While this result
suggests that there are structural changes, we cannot conclude that the structure changes every
month from this observation. It can be assumed that the large volatility of the regression
coefficients is caused by sampling bias. Therefore, it is unacceptable for us to use individual
models.

Consequently, we believe that the best way is to estimate models for each period after dividing
the period and data into suitable segments with break points. We already have plenty of existing
studies regarding the methodology of structural change tests and so can undertake the test.* In
particular, the best subset selection procedure is the most useful when we do not know when and
how many break points we have. Assuming that there is only one break point, we would
undertake a structural change test for each month in turn. Then we would do the same for all
possible combinations of two months based on the assumption that there are two break points.
We would also do the same for all the other possible combinations. This is far from efficient, but

it is a manageable method.

4 The structural change test is an equality test of regression coefficients f#,, f#, . The methodology of the equality test

depends on the assumption of the variances of the error term; i.e., either a,z = cr% or 012 s ag . When the variances of the error
term are equal (a]2 = a% ), we have a general method for verifying the linear hypothesis on regression coefficients. If the

! 2 . . . o
variances of the error term are not equal (o, # 0 % ), we can use the asymptotic likelihood ratio test and calculate the unknown

coefficient by using the fact that —2/og (skewness ratio) shows a chi-square distribution. Amemiya (1985) introduces in detail the
method of dealing with this issue.
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In conclusion, the issue that the structural change test arrives at is how to select a suitable
model from a band of estimated regression models, estimated for alternative combinations of the
subject periods. The more break points we have, the better the model fits the estimation, but we
need more variables in total. Because of this trade-off situation, we focus on the balance between
the goodness of fit of the model and the number of variables. We can then apply AIC to select the

most suitable model.’

4.3  Estimate of successively changing structure

Suppose that our structural change tests reveal break points (71, 2, ..., #;) for the observed period
(from 0™ to T™). We then face the following questions. Will the structure of the period from the
most recent break point 7, to the current period of 7 remain the same for the next period of T+1?
Alternatively, will we need to undertake another structural test between the pooled data covering
the periods from t, to T" and the new set of data for T+1™? If we do find a structural change, do
we need to estimate a new model for the period T+1? Does the estimation of a new model for
each new period in the following periods mean that the model becomes one with structural
change? These questions suggest that our next issue is how to incorporate a new structure with
additional data into the existing model constructed from the previous set of data.

This issue can be paraphrased in the following way. First, we think that structural change does
not occur and finish at a break point instantaneously. Instead, it is likely that some time is needed

for adjustment to a change caused by an external shock to be manifested. Thus the regression

5 With regard to this issue, Garcia and Perron (1996) state the methodology of the structural change test for the case
where we know that structural change happens twice but do not know when the break points are. Jushan and Perron (1998)
discussed the case where we do not know how often and when structure changes. Takatsuji (2001) proposed a method of
exploratory analysis of structural change by using discrete time dummy factors and the AIC assuming that variance is even. This
method is applied to the analysis of similar data in Nishimura and Shimizu (2002), assuming that there are two break points
around a bubble period.
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coefficient also changes successively and not at once. In this case, an identified break point tells
us the time when successive changes become too great to ignore from a statistical point of view.
However, this does not necessarily mean that we can predict a “true” regression coefficient that
changes successively by estimating individual regression models for each of the break points.

The estimate of a model with structural change is one issue and the estimation of successively
changing “true” regression coefficients is another. In the model with structural change, we
disregard all data belonging to the period prior to the break point. Thus, we cannot evaluate the
successive changes. Consequently, the issue can be restated as follows.

How can we incorporate a successively changing regression coefficient with additional data
into the existing model (constructed from the previous sample) on the assumption that the
structural change occurs successively?

We have two methods for dealing with this issue. One is the application of a Kalman filter and

the other is the Overlapping Period Hedonic Model, which we will propose later.

4.4 Kalman filter
A discrete-time Kalman filter is a method for estimating successively changing regression
coefficients where there are regularly updated observations.

We assume that the regression coefficient as of period f is expressed as an unknown state
variable f8,(K x1) 6, the observed secondhand condominium price data is y,(n, x1) and the
explanatory variable is X,(n, xK) . More precisely, both the price data and the explanatory
variable are transformed into logarithms. The number of observations as of period ¢ is described

as n, while K is the number of explanatory variables including the constant term.

6 We express the matrix of m rows and n columns as (man). Any vectors x describe a row vector while x’represents a

column vector.
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Additionally, we set an assumption that, where unknown, the regression coefficient g, is
equal to the previous regression coefficient £, , and changes successively due to external shock

(random error v, (K x1)). Hence we can describe these conditions as follows.
B =PtV (36)
Y. =X, B, +u (37)

where u,(n, x1) is the random error for the price data.

We can rewrite this issue by using these symbols as follows.

How can we incorporate a successively changing regression coefficient ( #,) with additional
data ( y, ) into the existing model ( f#,_,) (constructed from the previous sample) on the assumption

that the structural change occurs successively?

Suppose that we know a model g, , for the period r—1, which is a chance variable with an
average and variance. f, and y, for the period ¢ are functions of chance variables, f,_,, v, ,u,.

The joint probability density is described as:

JSB,y)=rB\y)f(y,)- (38)

On the right-hand side, the first term, f(f,|y,), means the conditional probability density of
B, where we have y,. In other words, this term is a formulation of the issue mentioned above,
namely “How can we incorporate a successively changing regression coefficient ( g, ) with
additional data (y,) into the existing model ( #,_, ) constructed from the previous sample?” Based

on this conditional probability density, we can solve this formula by maximum likelihood

estimation of §, .
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FB\y) - s (39)

From equation (38), f(f,|y,)can be described as

fBoy)__ SBoy)
0 (1@, voa,

fBy)= (40)

Generally, the Kalman filter equation is sought from the variance-covariance matrix of v, and
u, . We do not know the matrix, though, and hence we need to estimate it together with g, by the

maximum likelihood method. While there is a technical difficulty, the estimation would be easier

by assuming that the variance—covariance matrix of v, and #, is a diagonal matrix.

This application of the Kalman filter is a potent method for estimation of successively
changing regression coefficients’. However, we are not sure about characteristics of this solution
for our particular data and hence put aside the application of the Kalman filter as our task for the

future.

4.5 An Overlapping Period Hedonic Model

Generally, we estimate hedonic models with structural change by observing a set of data in
certain periods separated by each break point. In other words, we break the connection of the data
at the break points. This makes it difficult for us to identify regression coefficients with the
assumption that structural change happens successively. Thus it would be reasonable to estimate
the regression coefficients, in a similar way to that in which we would work out a moving

average, by establishing consecutive hedonic models with a specified period.

7 Harvey, A.C. (1989), Maddala, G.S. and Kim, In-Moo (1998).
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We backdate by r periods and estimate £, with those samples between period 1 —7+1 and

period ¢. The model is:®

y,=X8 +5, 41)

where

3;."=(y|"’y.'—l" "':yr—r+l‘)

X=X, X' X ')

el NI ' ' 1
u, —(ll, s My s My ).

Then we work through the following process.
1. The initial period is ¢ =7-1. (We shall change this figure later.)
2. Estimate the model based on samples from period ¢ —7+1 to period ¢.
3. Move forward to period r +1— ¢ and repeat step 2 until the current period.

In this estimation, samples are repeatedly used in a specified period for z. This is the way by
which we can estimate a successively changing structure. We do not break connectivity between
the set of samples at break points but find out their structural change by connecting individual
models consecutively.

We call this the Overlapping Period Hedonic Model (OPHM) and call period 7 as the
“overlapped estimate period”. We estimate our model in this way. Our secondhand price index is

based on the OPHM model as we explain in detail in the next section.

8 x" and A’ represent transposition of vector x and matrix 4 respectively.
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4.6 The Overlapping Period Hedonic Model index: a proposal

We apply OPHM to a hedonic index, OPHI. The OPHM is a model that has a particular structure
for a specified period of 7. This means that we can estimate a price index in the form of time
dummy coefficients for the time dummy factors for the observed period; i.e., 7 —1 time dummy
factors for 7 periods. In OPHM, we estimate the model by moving the application period of 7
month by month. The key point is how we can connect the indices.

We develop OPHM for period ¢ based on formula (15) as shown below.

y =X, +u, (42)
where
a,.
y!—H-l uf-'r+1 ! :7-*2
¥ = C el = "B, =| ay however (T —1+ K x1),
Vi LJE| a
!
yr ul b
1
0 0 0 0 X .,
1 00 0 X, .,
- 1 0 0 X .
Ky =] . . however (n,_,,, +---+n,_ +n X7-1+K).

This assumes that we estimate an OPHM for ¢ periods and time dummy factors of
a, ,.1»a, ,a,. These are price indices of which the base point is /-7 +1 while the indices
cover t—7+2,...,t—1and r.

Then we focus on:
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ar _&.'—l i (43)

This shows the difference in the price index between periods 7 and 1 —1. We then define this

as the difference in the price indices for all periods, namely between Lindex, for period ¢ and

Lindex,_, for period r—1.

Lindex, — Lindex, , =a, —a,_, (44)

We can establish our price index for all periods as follows.

1. Try to establish the price index, Lindex,_,, for the period up to ¢ 1.

2. Have additional sample for period ¢.
3. Estimate an OPHM from the data between period 7 —7 +1 and period ¢.

4. Have time dummy factor coefficients, a,_.,,, --,a,,,a,, corresponding to periods

between t—7+2 and ¢.

5. Establish the price index, Lindex, , for period ¢ by application of 4, —a,_, .

Lindex, = Lindex,_, +(a, —a,_,) (45)

6. Repeat the same process for the next period.

5 Positive analysis of the OPHM index

5.1 How to decide the overlapped estimate period

It is very important to decide the overlapped estimate period of 7 (see section 4.5) for making a
Overlapping Period Hedonic Model index. We need to pay careful attention to the following

points.
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1. The purpose of setting the overlapped estimate period is to exclude effects on the

regression coefficients caused by unique sampling bias in the monthly data if we
separate our sample on a monthly basis. It is impossible for us to distinguish these
effects from structural change. We do not know the reason for the bias (if any) at this
stage. However, we would like to exclude seasonal changes of the market at least, and
we know the season when many people move. Therefore, the overlapped period should
be no less than one year since we need to cover all four seasons.

It would be unreasonable to think that the structural change spreads into the market in a
single month. There should be an adjustment period for the structural change. Therefore,
the overlapped estimate period should be long enough to cover this adjustment period.
Conversely, we would miss the structural change if we made the overlapped estimate

period too long. We need to keep the period short enough so as not to miss the change.

Consequently, we have no clear criteria for setting the overlapped estimate period and hence

use three years or 36 months for the period at the moment.

5.2 Characteristics of OPHM index

The results from estimation using the Overlapping Period Hedonic Model index are as follows.

1.

The index shows similar movement to the index with no structural change but is
systematically higher (Figure 6).

The accuracy of the estimation of the OPHM index is described in Figure 7. As for the
index with no structural change, the explanatory power shown by the coefficient of
determination is weaker in 1991-1992 (Figure 5). This is also the case for the
Overlapping Period Hedonic Model index since the power for those periods that include

1991-1992 in the overlapped estimate period is weaker.
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3. We can see the trend in this index more easily than in the index with no structural

change. When we observe the changes in regression coefficient historically (Figures 8—
11), they have moved more smoothly without violent fluctuation.

. The regression coefficients for “distance from nearest station” and “proximity to CBD”
become smaller in recent years in absolute terms. The elasticity of the distance becomes
smaller. There is cyclical change for “age of building”. The elasticity of “occupied
area” becomes greater in recent years. In summary, consumer preference is moving
towards “occupied area” rather than location.

. Table 4 shows the average and standard deviation of regression coefficients for the
NRHI and OPHM. Coefficients of variation (CV) in NRHI and OPHM model are: CV
for nearest station is NRHI =-0.191, OPHM = -0.119, CV for proximity to CBD is
NRHI =-0.381 , OPHM = —0.320, CV for age of building is NRHI = -0.209 ,
OPHM=-0.178 and CV for occupied area is NRHI = 4.277 , OPHM = 3.898. All these

figures of OPHM are smaller than those of the model NRHI.
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Figure 6. Comparison of price indices between OPHM and RHI: 1997/01 - 2002/06.
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Table 4. Statistics of the main regression coefficients with NRHI and OPHM

Types Summary statistics of estimated parameter
I Principal Ind t Variables
o rincipal Independent Variables Standard | Coefficient .
model Average s .. 1 Skewness | Kurtosis
deviation {of variation
WK : Distance to the nearest station | -0.055 0.011 -0.191 -0.274 -0.216
E ACC: Accessibility to CBD -0.406 0.155 -0.381 -0.619 -0.139
=
BY: Age of building -0.175 0.037 -0.209 0.231 -0.935
FS': Floor space 0.024 0.101 4.277 -0.773 -0.881
WK : Distance to nearest station -0.056 0.007 -0.119 -0.317 -0.921
E ACC: Accessibility to CBD -0.415 0.133 -0.320 -0.758 -0.536
a,
e BY: Age of building -0.170 0.030 -0.178 0.304 -1.289
FS': Floor space 0.018 0.070 3.898 -0.645 -1.309
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Figure 8. Time profile of regression coefficient of WK by NRHI and OPHI method



2
ACC/Average:minuites m
e
e Sl H. 23 = After Building Year/Average:Year
NN N
| PPPU WY U T P Ll ~NOWYT MmN w
_ o BTV T TR T T
70T00T &
202007
801002 o )
b= 80100T
zoloot =
| = 701002
ﬁ —— =] 800002
n 700002 m 700007
_ 806661 Nv, 806661
706661 S | 706661
808661 w 808661
- = sL | > | | Euosesl
— S .
801661 = = » 80L66
TOL661 = l\_ T0L661
209661 "5 | 809661
209661 = ! | Ewooes!
g = lﬂmw 805661
805661 S S—1 =T
705661 H - 05661
80¥661 - £ 80p66 1
W
707661 e = 07661
50
80661 2 80£661
T0E661 b T0€661
802661
= 807661 2
= 707661
T0Z661 =
e 801661
— 1
- W 201661
701661 g _ 200661
800661 = B i, HE S I
T 4 2ag e a8
©S = o4 m I @ 9 5 o= - s T ¢ 3¢ 9 T 5 3 <%
S & 8 § % 2 I < ¢
= Ag-1ua101ffae0 uo1ssa.i3ad
DB f[200 uo1ssLFal sh
=)

40

Figurel0. Time profile of regression coefficient of BY by NRHI and OPHI method
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5.3 Conclusion Regression coefficient variation by changing t

The index OPHI based on the Overlapping Period Hedonic Model that we propose is more stable
than NRPI. However, changing the overlapped estimate period t gives us information of how
sensitively each regression coefficient depends on 1. The following two points are to be settled.
e Ifan overlapped estimate period T brings time lag structure into regression coefficients,
the expected lag structure of the price index on the regression model must be specified.
e If the lag of an index originating in the overlapped period T can be observed, standards
and algorithms for optimizing the interval t need to be developed.
Changing the period t from 12 to 36 months leaves 25 temporal paths of regression
coefficients. The paths of four main variables that explain variation in secondhand housing prices

significantly are shown in Figures 12-15. Seemingly all four variables indicate evolving lag
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patterns in regression coefficients according to increases in overlapped estimate period t.
Regression coefficients show systematic fluctuation with time; i.e., the structural change of the
hedonic model. Moreover, a wider estimate period T corresponds to a greater lag of coefficient
change and a greater delay in movement of the index up and down.

Thus, the OPHM index gives us the possibility of choosing optimal overlapped estimate

period 1, and the index is expected to be either stable or dynamic.
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Figurel2. Time profile of regression coefficient of WK with T of 12 to 36 months
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6 Conclusion

In the presumption of a hedonic index, the correspondence to structural change is a very
important problem. It is understood that in an NRHI, correspondence to structural change is quite
unstable. We propose OPHM as a conjunctive in presumption of a hedonic index with structural
changes.

However, after the analysis of the OPHM index, the following issues remain.

1. The first issue is how to decide the overlapped estimate period. Our observation of both
the index with no structural change and OPHM shows that regression coefficients
change from period to period and that there are structural changes. We should not set
the overlapped estimate period too long, as this may miss the structural change. At the
same time, it should not be too short since both the regression coefficients and the price

index become unstable. Although we changed the overlapped period from 12 months to
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36 months and tried observation of change of a regression coefficient, when we
proposed the optimal period, we did not obtain the desired results. We need clearer
criteria. ?

2. Secondly, there are structural differences between regions. For example, we understand
that consumer preference is different between the east side and the west side of Tokyo’s
23 wards. Also, we talk about the nature of locality and the status of location in our
industry. If each region has a different structure, how can we have regional segments
with the same structure? What is the relationship between the model consisting of
Tokyo’s 23 wards as a whole and individual models for each prefecture in the region?
Additionally, we have not analyzed in this paper whether the rate of structural change
has been the same historically and regionally.

3. Thirdly, the number of observations is different in each month if the sample is divided
on a monthly and regional basis. In panel data analysis, it is known that the number of
observations varies either if the observable market information is lopsided with regard
to particular characteristics or if observations of particular characteristics are missed. '
The issues are how to deal with these biases, whether we can avoid the problem by
using a regional dummy factor and what effects are given by the biases in the
identification of differences in regional structure.

4. Fourthly, seasonal change of the number of observations of a particular set of
information at a particular moment greatly affects estimation of regression coefficient

of the index with structural change and the OPHM index. Without structural change, the

We checked that structural change does not happen in less than three years on our data,
As for sampling selection bias, see Griliches (1996), Davidson and Mackinnon (1993) and Maddala (1985).
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estimate results would be unbiased since the observations are drawn from the same

sample while they are biased if there are any structural changes.

We have proposed the OPHM index since neither the index with no structural change nor the

index with structural change is adequate for coping with structural change. Several tasks remain

to be resolved, but the proposed index overcomes the defects of both the index with no structural

change and the index with structural change.

The identified tasks are summarized as follows.

1.

The first task is how to resolve the nonlinear structure of a hedonic price index. In this
paper, we undertake nonlinear analysis of the relationship between condominium price
and variables such as the distance from the nearest station by logarithmic
transformation. However, the relationship should be considered a nonlinear structure.
Several previous studies carry out nonlinear estimation by using Box—Cox
transformation. We need to develop a more suitable function.

The second task is to sort out heterogeneous variance in the monthly database. If we can
confirm that the variance is constant between each period, we can work out the problem
by the least squares method, weighted by estimated variance for each period. However,
we have no proof of this. It may be worth investigating the application of the

generalized least squares method.
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